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the ground plane metallization, with the edge additionally

soldered to the fixture end wall). Note the presence of the spikes

predicted by theory. The frequency points at which ]L$lll = – 10

dB define a spike width and correspond to 8~oTAL = 0.316.

(Other convenient values may be chosen as desired.) Returning to

the model, 82L can be varied until the theoretical 8~o~AL = 0.316

spike width equals the experimental – 10 dB width. Our experi-

mental spike width of 44.7 MHz corresponds to 82= = 0.0039,

which is au angular uncertainty of 0.22°.

This small value of uncertainty was achieved experimentally as

follows. Several measurements of the 50 Q DUT were taken

using the delay of the longer offset short as a variable parameter.

This is illustrated in Fig. 6. The mutually consistent delay which

properly characterizes the offset short corresponds to minimum

spike width.

V. SUMMARY AND CONCLUSIONS

The Glasser error analysis theory [6] has been applied to
network analyzer accuracy enhancement by offset shorts. The
effects of DUT dependence were discussed and a usefuf calibra-
tion bandwidth determined. Data necessary to emulate the HP
8510 were derived and then used in the model to provide realistic
results. Convenient techniques for optimizing experimental accu-
racy and for obtaining an estimate of the uncertainty in actuaf
short, offset short calibration standards were presented. Due to
the limited bandwidth properties of offset short calibration,
multiple standards are necessary for wideband operation. The
importance of the characterization procedures described above
continues to apply in the multiple standards case.

The information provided in this paper should contribute to
the efficiency of making chip-level measurements in a microstnp
environment. This will assist in the design and realization of
monolithic microwave integrated circuits. Much of the work is

also applicable to offset short calibration in waveguide and other

transmission line media.
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On the Scalar Approximation in Fiber Optics

CHING-CHUAN SU, MSMBER, IEEE

Abstract — It is widely accepted that the scalar approximation is valid

when the gradient of the pennittivity distribution v c/t is small enough.

Such a condition is rather demanding, however, since it precludes a rapidly

varying permittivity distribution, which is usually the case in a practical

optical fiber, due to some kind of fluctuation in a fabrication process. In

this investigation, we derive the scalar approximation from the electric

field integral equation. From the result it is seen that the applicability of

the scalar approximation does not depend on the roughness in the permit-

tivity distribution so long as the pertnittivity in the core is close to that in

the cladding.

I. INTRODUCTION

Mathematics is greatly simplified on applying the scalar ap-

proximation to the analysis of the propagation characteristics of

guided modes in dielectric waveguides. Early in the development

of the dielectric waveguide theory, Gordon [1] and Marcatili [2],

among other investigators, applied the scalar approximation (to-

gether with other approximations) in studying the inhomoge-

neous slab waveguide and the rectangular waveguide, respec-

tively. In 1969, in a study mainly on the step-index circular fiber

(of which c,, the ratio between the permittivity in the core and

that in the cladding, is close to unity), Snyder [3] obtained the

scalar characteristic equation from the rigorous vectorial one. In

the simplification, those terms which are of order c, – 1 or

smaller can be discarded. Later, Gloge [4] obtained the same

scalar characteristics equation by using a set of field components

that are not self-consistent. He noted that the inconsistency in

transverse field components is of order C. – 1.

For treating graded-index fibers or, generally, for transversely

inhomogeneous fibers, Maxwell’s equations in the differential

form (Section II) are employed by most researchers. Thereby, it is

widely accepted that the scalar approximation is valid when the

gradient vc/c is small enough, as noted in [5]–[9], where c

denotes the relative permittivity distribution in a transverse plane.

Suppose the relative permittivity distribution c can be expressed

as

((x, y) =61+( (2–61)P(x, y) (1)

where the maximum value of P( x, y ) is unity such that Ez ( > c1)

corresponds to the maximum in ((x, y), and P(x, y) = O in the

cladding. Having the gradient v c/c small enough requires that

the permittivity difference A be small enough and that the profile

P( x, y) be smooth over the fiber’s cross section, where A = C, – 1

and C, = c1 /tl. In other words, the scalar approximation could

deteriorate if the profile I’( x, y ) is rapidly varying (such as at a

step discontinuity), even when the permittivity ratio e, becomes

close to unity.

A less demanding condition on the scalar approximation can

be provided by the formula proposed by Snyder et al.

Manuscript received August 18, 1987; revised January 4, 1988.

The author is with the Department of Electrical Engineering,

Tsinghua University, Hsinchu, Taiwan

IEEE Log Number 8820444.

[10, eq.

National

0018-9480/88 /0600-1100$01 .00 01988 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 6, JUNE 1988 1101

T--------T

●L—+4—+———I——N
.0 .5 1.0

R
Fig 1. Fluctuations in the permittivity distribution (in a radial dmection) of

an optical fiber. The radial distance R is a normalized quantity.

(17)], [11, eq. (32-22)]. Such a formula relates the exact vectorial
and the approximated scalar propagation constants via a quotient
of two integrals. From the formula, it is seen that the error in the
scalar propagation constant is of order A if the value of an
integral involving the gradient v c \t is of the same order. This

therefore accounts for the validity of applying the scalar ap-

proximation to circular fibers of stepindex profile and some

smooth profiles except a single step discontinuity [9] of order A.

This is because, as noted in [10, note 12], ag integration of

the derivative of a discontinuity of order A results in a value of

order A.

A profile with a single or a limited number of discontirtuities of

order A (in a radiaf direction) does not pose the most serious

trouble in the scalar approximation. In a practical single-mQde

fiber, in order to make the fiber’s radius larger than the wave-

length of art exciting light source, the ratio c, is usually chosen

close to unity, whereas owing to certain kinds of fluctuation in

the fabrication process (for an example, see [12, p. 302]), the

profile P maybe quite rough. A representation of the roughness

in the profile P is given by Fig. 1; for practical examples, we

refer the reader to [12, figs. 4.3.5 and 4.5.3] and [13, figs. 106 and

107]. In view of the roughness, the question is now whether the

scalar approximation can be applied to a practical single-mode fiber

where the profile P fluctuates significantly. In Section III, we
present an alternative derivation of the scalar approximation
based on Maxwell’s equations in the irttegraf form, from which
we will answer the question just raised.

II. THE SCALAR APPROXIMATION FROM THE

DIFFERENTIAL EQUATION

Consider an axially uniform dielectric cylinder embedded in an

infinite homogeneous medium with permittivit y c~cl. For such a

transversely inhomogeneous fiber, the dependence of the fields

on the time and the axial coordinate (z) can be assumed to be

exp ( jco t – j~z ). From Maxwell’s equations in the differential

form, one has

V:Et(x, y)+[k;c(x, y)–/32]E1(x, y)

[

+dV v, P(x, y). E,(x, y)
t

l+ AP(x, y) I=o (2)

2 denotes the two-where, El(x, Y) = 2E..(x, Y)+ ~E”(x, Y), v~

dimensional Laplaciart operator, V, = 28/8x+ jd/ily, and

k: = cd2pOc0. The last term on the left-hand side of (2) represents

the effect of the polarization charge.

In those regions where the profile P is smooth, the polarization

effect decreases linearly with the difference A. In this way, (2)

becomes

v,~ij(x, y)+[k; f(x,y)-p]+(x>y)=o (3)

by discarding those terms of order A or smaller, where + denotes

EX or Ey. Along a contour of discontinuity in the profile P’, one

can resort to the boundary conditions. From the continuity

requirement of the normaf component of cE, one has that the

field ~ has a discontinuity at most of order A at a permittivity

discontinuity of order A. And from the continuity requirements

of the axiaf fields EZ and Hz, which can be expressed in terms of

E,, we conclude that V, $ has a discontinuity at most of order A

between the two sides of a contour of permittivity discontinuity

(but not at the cliscontinuity). Then, by discarding those terms of

order A or smaller, we have the boundary conditions in the scalar

formulation: both + and v,! are continuous in the vicinity of

the permittivity discontinuity. Corwentiortally, these boundary

conditions are stated in a loose way: both # and Vc~t are

continuous at a permittivity discor~tinuity. Practically speaking,

these two sets of boundary conditions lead to the same results,

however.

The question that remains is: when the profile P is rapidly

varying over parts or the entirety clf the fiber’s cross section, is

the scalar approximation still valid? Obviously, from the view-

point of the differential equation (2), the answer is negative in

general, since the magnitude of the derivatives of the profile P

may be comparable to or larger than the factor l/A.

III. THE SCALAR APPROXIMATION FROM THE

INTEGRAL EQIJATION

From the magnetic vector potentiaf A and the electric scalar
potential +, the electric fields can be found from the rela-
tion E = – jwt – v@. Noting that current density in ,4 is

joco [ 6(x’, y’) – c1]E(x’, y’) and using the continuity equation

for the charge density in ~, the relation becomes the electric field

integraf equation

E(x, y) ‘k:jj%(y~)[c( x’>y’) - cl]~(x’, y’) dx’dy’

.[C(X’, y’)- cl] E(x’, y’)} dx’dy’. (4)

Here and throu@out this investigateion the integral is taken over

the fiber’s cross section. In (4), G denotes the two-dimensional

Green’s function, and it is known that

G(yp) = KO(y/J)/2n (5)

where KO denotes the zero-order modified Bessel function of the

second kind, y2 =/32 – k: ( > O), k; = k~cl, and p = [(x -- x’)*

+ (y – y ‘)2 ]1/2. Writing (4) explicit Iy, we have

(EX(X, ~) =A k;~/G(yp)fYdx’dy’

(~,(X, y) =A k;~@(yp)fVdx’dy’

ajj ( )[afx afy
+ :— G yp 1}~ -+: –jb~dx’dy ’ (6b)

dy ay’
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and

(
~,(x, y) =A – y2f@yP)~dX’dy ’

-’~JJG(’’’[:+%ldd”}”} ‘“)
where the functions ~, denote P(x’, y’)E, (x’, y’), i = x, y, or Z.

In the remainder of this section, we show that the scalar

approximation can be made on (6) so long as the difference A is

kept small, regardless of the functional behavior of the profile P.

To begin with, it is noted that

O<y2<k~A (7)

since k: < /32 < k$,. The derivative of the Green’s function in a

transverse direction ‘is expressed as

dG(yP)/i?t= – y(At/p)Kl(yp)/2m (8a)

where t = x or y, A t denotes the difference x – x‘ or y – y‘,

correspondingly, and KI denotes the first-order modified Bessel

function of the second kind. It is noted that both functions KO
and KI are positive and monotonically decreasing. In a practicaf

calculation, arguments in the associated Green’s function range

from zero to a quantity of order 1 or 10. When yp ~ O, K. and

Kl become singular as

KO( yp) -+ –ln(l.781yp/2) (8b)

and

Kl(yp) +1/yP (8c)

and when yp -m, KO and KI are equaf and become vanishing
as

Ko(yp), Kl(yp) + (n/2yp)l’2exp(– yp). (8d)

For a small argument yp <1, the functional values of KO and KI
follow the relations, with the symbol ~ in (8b) and (8c) being

replaced by the inequalities > and <, respectively. For a large

argument yp >1, one may use (8d) as asymptotic values of both

KO and KI. It is essentiaf to note that, except for the argument

being very small, the functional values of KO and KI are of the

same order of magnitude. Thus, the ratio between the magnitude

of Green’s function G and that of 3 G( yp ),/6’ t is at least of order

1/y. The functional values of both K. and KI with a large

argument are much less than those with a small one, and are

neglected in the following analysis (the results derived in (10) still

hold if this approximation is removed, by noting the factor y in

(8a)). Then, for an arbitrary positive (or nonnegative) function ~,

we have

= (f)qf’) (9a)

and

= .Jff(xw) YK:’)

Ll
f(x’, y’) ~x,dy,

<a
2 n-p

dx’dy’

(9b)

Here { = 1 when yl <1, or ~ =1/y when yt > 1; 1 denotes the

linear dimension of the cross section; a denotes the resultant

effect of – At/p, which is a complicated function of the observa-

tion point (x, y) (in any event, the magnitude of a is less or

much less than unity, since – 1< At/p< 1); O stands for the

order of magnitude; and (.) denotes the averaged magnitude of

the associated function over an area of linear dimension &

around the observation point (x, y).

Apparently, the relations in (9) hold for a piecewise-continuous

function. Thus, for a function f ( x, y) being positive over the

cross section and, possibly, containing discontinuities due to the

discontinuities in the profile P(x, y ), we have

(lOa)

where

‘I(x~y) ‘~~G(YP)f, (x’, Y’) dx’dy’.

Further, it is noted that, in general, (9) is still valid for a function

~~ /c? t being positive and, possibly, containing singultities due

to the discontinuities in T’(x, y). Then,

1?,
— = o(&/LY)
aB,/at

(lOb)

where s = x or y, and

afi(x’, y’)
B,(x, y) ‘~fG(yp) 8s, dx’dy’.

Noting 8G/d t = – 8 G/at’ and using integration by parts, we

have

~A, =Bt. (1OC)

Relations similar to (9) can be given for those functions f (x, y)

which cannot be either positive or negative over the entire cross

section. One may divide the cross section into two subregions and

let f(x, y) = fl(x, y)– f2(x, y), such that fl (f2) is positive

(zero) over one subregion, and is zero (positive) over the other
one. Treating the integrals involving f 1 and ~ 2 separately, it is

seen that (10) is still valid for general cases. The three relations

given in (10) play a central role in this investigation. As discussed

below, (1OC), together with (lOa) and (lOb), implies that so long

as the difference A is kept small, the effect of the polarization

charge even in a rapidly varying profile is much weaker than that

of the transverse polarization current, the condition upon which

the scalar approximation is valid.

Consider the case where (EX ) is much greater than or is

comparable to ( EY). Assume for the moment that ( E.Y) is

greater than (E: ) by a factor kl.f/a or larger. Then, using (10)

and (7) it is found that the ratio between the orders of magnitude

of the first integraf on the right-hand side of (6a), the second of

(6a), the first of (6c), and the second of (6c) is

0(k~&2) : 0(a2) : O(Aakl&) : O(akl&) (11)

which is consistent with the assumption just made (noticing the

ratio between the first and the last terms). Note that, as seen

from (6a), the quantity A ( kl &)2 should be of the order of unity.

Consequently, when the permittivity difference A vanishes, (6a)

becomes the scalar field integraf equation

$(X, y) = k;/@yp)[c(x’,y’)- Cl]$(x’, y’) dx’dy’ (12)
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where + denotes EX. Since the integral equation (12) is obtained

by discarding those terms smaller by a factor of order a2A, it is

reasonable to expect that the relative errors in both the eigen-

value ~ and the eigenfunction ~ are of the same order. (Based on

a perturbation theory, a proof of such relations has been given

for the standard eigenvalue problem in the matrix form [14].)

In the case where ( EX) is much greater than ( EY), such as in a

mode excited by an x-polarized wave, it is found from (6) that, in

general, the ratio between the magnitudes of the three Cartesian

components is

EX:EZ:EY =l:O(a@:O(a2A). (13a)

From the relation v x E = – jupOH, one can find that

Hy=— ~& EX{l+0[rx2A]}. (13b)

Then, H, satisfies (12), under the same order of inaccuracy. The

arguments made above can be given for ~, by simply interchang-

ing the subscripts x and y. In summary, (12) is valid for the

transverse Ckirtesian components, EX, l~v, HX, and H,,, whereas

it does not hold for the axiaf components E, and H=. On

applying the operator ( vcz – y2 ) to both sides of (12), we obtain

(3), the differential equation in the scalar form.

IV. CONCLUSIONS

From the electric field integral equation a quantitative analysis

of the effect of polarization charge has been given. It is found

that the error due to the scalar approximation (neglecting the

polarization charge) is proportional to the difference A, regard-
less of the functional behavior of the profile P. Physically, this

fact is accounted for by noting that, so long as the difference A is

kept small, a rapidly varying permittivity distribution leads to

closely clustered polarization charge (positive or negative); hence

the polarization effect is weakened due to self-cancellation. We

have conducted many calculations for a circular fiber (using the

method in [15]), and all the results support the conclusion.
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Saturation of the S1S Mixer by Out-of-Band Sigmalls

LARRY R. D’ADDAR1O

,@tract —The tendency of S1S mixers to satnrate at low input signal

levels is shown to depend on the total signal voltage across the junction,

including frequency components outside the band of interest. If large

dynamic range is i-o be achieved, mixers should be designed with embedd-

ing networks that present low impedances to the junction at out-of-band

frequencies.

I. INTRODUCTION

S1S (superconductor-insulator–superconductor tunnel junc-

tion) mixers allow the construction of very sensitive receivers at

millimeter wavelengths, but the dynamic range of such receivers

may be limited because of mixer saturation at low input powers.

This has long been recognized as a, significant problem [1]-[5],

and approximate formulas have been presented for the input

power at which departure from linear operation begins [11, [2].

Reports of experimental mixers often include measurements of

this saturation power (e.g. [4], [5]). However, nearly all of this

theoretical and experimental work has considered only a mono-

chromatic input signal. In practice, it is often necessary for the

receiver to accept a broad-band noise signal, such as thermal

noise at room temperature. For example, strong noise sources are

often used to calibrate the gain of the receiver and to determine

its noise temperature; unless it can be assured that the receiver

remains linear for these signals, the calibration will be in error.

We will show lhere that it is inaccurate to assume that the

saturation noise temperature T,at for broad-band signals will be

such that P,=t = kTS~tB, where P,at is the saturation power mea-
sured for monochromatic signals and B is the receiver’s band-
width. This is because the broad-band signal contains power well
outside this bandwidth, and, unless special precautions are taken,
an S1S mixer will begin saturating because of the out-of-lband
signals well before the in-band power reaches P,at.

II. APPROXIMATE ARGUMENT

An argument explaining the saturation mechanism of S1S
mixers was first put forward by Smith and Richards [1], and later
developed into an explicit formula [2]. The idea is that the
small-signal gain of the mixer is a function of its dc bias, and
reaches local maxima at certain voltages (photon peaks) where
the mixer is normally operated. If the output frequency (IF) is
low, then the output signal voltage may be considered a perturba-
tion of the bias voltage, so that the instantaneous gain varies over
the IF cycle. As the signal voltage sets large, the average gain is
reduced from the peak. The embedding impedances required for
low-noise, high-gain operation of an S1Smixer are such that the
largest signaf voltage is likely to occur at the IF, in which case
this argument gives a fair description of the saturation mecha-
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