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the ground plane metallization, with the edge additionally
soldered to the fixture end wall). Note the presence of the spikes
predicted by theory. The frequency points at which |§};|= —10
dB define a spike width and correspond to 81grar = 0.316.
(Other convenient values may be chosen as desired.) Returning to
the model, 8,; can be varied until the theoretical 8grar, = 0.316
spike width equals the experimental —10 dB width. Our experi-
mental spike width of 44.7 MHz corresponds to 8,; = 0.0039,
which is an angular uncertainty of 0.22°.

This small value of uncertainty was achieved experimentally as
follows. Several measurements of the 50 @ DUT were taken
using the delay of the longer offset short as a variable parameter.
This is illustrated in Fig. 6. The mutually consistent delay which
properly characterizes the offset short corresponds to minimum
spike width.

V. SUMMARY AND CONCLUSIONS

The Glasser error analysis theory [6] has been applied to
network analyzer accuracy enhancement by offset shorts. The
effects of DUT dependence were discussed and a useful calibra-
tion bandwidth determined. Data necessary to emulate the HP
8510 were derived and then used in the model to provide realistic
results. Convenient techniques for optimizing experimental accu-
racy and for obtaining an estimate of the uncertainty in actual
short, offset short calibration standards were presented. Due to
the limited bandwidth properties of offset short calibration,
multiple standards are necessary for wideband operation. The
importance of the characterization procedures described above
continues to apply in the multiple standards case.

The information provided in this paper should contribute to
the efficiency of making chip-level measurements in a microstrip
environment. This will assist in the design and realization of
monolithic microwave integrated circuits. Much of the work is
also applicable to offset short calibration in waveguide and other
transmission line media.
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On the Scalar Approximation in Fiber Optics
CHING-CHUAN SU, MEMBER, TEEE

Abstract —1It is widely accepted that the scalar approximation is valid
when the gradient of the permittivity distribution Ve /¢ is small enough.
Such a condition is rather demanding, however, since it precludes a rapidly
varying permittivity distribution, which is usually the case in a practical
optical fiber, due to some Kind of fluctuation in a fabrication process. In
this investigation, we derive the scalar approximation from the electric
field integral equation. From the result it is seen that the applicability of
the scalar approximation does not depend on the roughness in the permit-
tivity distribution so long as the permittivity in the core is close to that in
the cladding.

I. INTRODUCTION

Mathematics is greatly simplified on applying the scalar ap-
proximation to the analysis of the propagation characteristics of
guided modes in dielectric waveguides. Early in the development
of the dielectric waveguide theory, Gordon [1] and Marcatili [2],
among other investigators, applied the scalar approximation (to-
gether with other approximations) in studying the inhomoge-
neous slab waveguide and the rectangular waveguide, respec-
tively. In 1969, in a study mainly on the step-index circular fiber
(of which ¢,, the ratio between the permittivity in the core and
that in the cladding, is close to unity), Snyder [3] obtained the
scalar characteristic equation from the rigorous vectorial one. In
the simplification, those terms which are of order ¢,—1 or
smaller can be discarded. Later, Gloge [4] obtained the same
scalar characteristics equation by using a set of field components
that are not self-consistent. He noted that the inconsistency in
transverse field components is of order ¢, —1.

For treating graded-index fibers or, generally, for transversely
inhomogeneous fibers, Maxwell’s equations in the differential
form (Section II) are employed by most researchers. Thereby, it is
widely accepted that the scalar approximation is valid when the
gradient Ve /¢ is small enough, as noted in [5]-[9], where ¢
denotes the relative permittivity distribution in a transverse plane.
Suppose the relative permittivity distribution € can be expressed
as

e(x, ) =e+(e;—€)P(x,y) (1)
where the maximum value of P(x, y) is unity such that €, ( > ¢)
corresponds to the maximum in e(x, y), and P(x, y) =0 in the
cladding. Having the gradient ve /¢ small enough requires that
the permittivity difference A be small enough and that the profile
P(x,y) be smooth over the fiber’s cross section, where A =¢, —1
and €, =¢, /¢,. In other words, the scalar approximation could
deteriorate if the profile P(x, y) is rapidly varying (such as at a
step discontinuity), even when the permittivity ratio €, becomes
close to unity.

A less demanding condition on the scalar approximation can
be provided by the formula proposed by Snyder er al. [10, eq.
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(17)], [11, eq. (32-22)]. Such a formula relates the exact vectorial
and the approximated scalar propagation constants via a quotient
of two integrals. From the formula, it is seen that the error in the
scalar propagation constant is of order A if the value of an
integral involving the gradient Ve /e is of the same order. This
therefore accounts for the validity of applying the scalar ap-
proximation to circular fibers of step-index profile and some
smooth profiles except a single step discontinuity [9] of order A.
This is because, as noted in [10, note 12], an integration of
the derivative of a discontinuity of order A results in a value of
order A.

A profile with a single or a limited number of discontinuities of
order A (in a radial direction) does not pose the most serious
trouble in the scalar approximation. In a practical single-mode
fiber, in order to make the fiber’s radius larger than the wave-
length of an exciting light source, the ratio ¢, is usually chosen
close to unity, whereas owing to certain kinds of fluctuation in
the fabrication process (for an example, see [12, p. 302]), the
profile P may be quite rough. A representation of the roughness
in the profile P is given by Fig. 1; for practical examples, we
refer the reader to [12, figs. 4.3.5 and 4.5.3] and [13, figs. 106 and
107]. In view of the roughness, the question is now whether the
scalar approximation can be applied to a practical single-mode fiber
where the profile P fluctuates significantly. In Section III, we
present an alternative derivation of the scalar approximation
based on Maxwell’s equations in the integral form, from which
we will answer the question just raised.

II. THE SCALAR APPROXIMATION FROM THE
DI1FFERENTIAL EQUATION

Consider an axially uniform dielectric cylinder embedded in an
infinite homogeneous medium with permittivity eye;. For such a
transversely inhomogeneous fiber, the dependences of the fields
on the time and the axial coordinate (z) can be assumed to be
exp(jwt — jBz). From Maxwell’s equations in the differential
form, one has

V,ZE,(x, Y)+[k(2)€(x’y)"BZ]Et(x’y)

V.P(x,y)E(x,y)
1+AP(x,y)

+ Ay, =0 (2)
where, E,(x,y)=2RE.(x,y)+ PE,(x,y), v/ denotes the two-
dimensional Laplacian operator, v, = Xd/dx + 3/dy, and
k2 = wug€o. The last term on the left-hand side of (2) represents
the effect of the polarization charge.
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In those regions where the profile P is smooth, the polarization
effect decreases linearly with the difference A. In this way, (2)
becomes

VA(x, p)+ [ kde(x,p) = B ] y(x,y) =0 (3)

by discarding those terms of order A or smaller, where y denotes
E, or E,. Along a contour of discontinuity in the profile P, one
can resort to the boundary conditions. From the continuity
requirement of the normal component of ¢E, one has that the
field ¢ has a discontinuity at most of order A at a permittivity
discontinuity of order A. And from the continuity requirements
of the axial fields E, and H,, which can be expressed in terms of
E,, we conclude that v,y has a discontinuity at most of order A
between the two sides of a contour of permittivity discontinuity
(but not at the discontinuity). Then, by discarding those terms of
order A or smaller, we have the boundary conditions in the scalar
formulation: both { and v,y are continuous in the vicinity of
the permittjvity discontinuity. Conventionally, these boundary
conditions are stated in a loose way: both ¢ and v,y are
continuous at a permittivity discontinuity. Practically speaking,
these two sets of boundary conditions lead to the same results,
however.

The question that remains is: when the profile P is rapidly
varying over parts or the entirety of the fiber’s cross section, is
the scalar approximation still valid? Obviously, from the view-
point of the differential equation (2), the answer is negative in
general, since the magnitude of the derivatives of the profile P
may be comparable to or larger than the factor 1/A.

III. THE SCALAR APPROXIMATION FROM THE
INTEGRAL EQUATION

From the magnetic vector potential 4 and the electric scalar
potential ¢, the electric fields can be found from the rela-
tion E=— jwd—vé¢. Noting that current density in 4 is
Jwegle(x’, y)— € JE(x’, y") and using the continuity equation
for the charge density in ¢, the relation becomes the electric field
integral equation

E(x,y)= k%ffG(Yp)[f(x’,y/) — & | E(x, ") dx'dy’
+(9,- 0 [ [T (7 - o)
[e(x'sy) = a1 B(x, )} d'dy @

Here and throughout this investigation the integral is taken over
the fiber’s cross section. In (4), G denotes the two-dimensional
Green’s function, and it is known that

G(vp) = Ko(vp) /2 (%)
where K, denotes the zero-order modified Bessel function of the

second kind, y?> =8%—k? (»0), k¥ =k, and p =[(x -~ x")?
+(y — y)*1Y/2. Writing (4) explicitly, we have

E(x,y) =A{k12ffG(Yp)fvdX’dY’

2 o]

,-+—%—jﬁﬁ] dx'dy'} (6a)
X dy
E,(x,7) =A{kfffG(vp)ﬁ- dx"dy’

9 of. oL . o
+—(,EffG(yp)[ F + 3y —],sz] dx dy} (6b)




1102

and

E(x,y) =A{ - YszG(YP)fz dx’dy’

—JﬁffG(vp)[a, ﬁ]d d} (6¢)

where the functions f, denote P(x’, y)E (x',y"), i=x, y, or z.

In the remainder of this section, we show that the scalar
approximation can be made on (6) so long as the difference A is
kept small, regardless of the functional behavior of the profile P.
To begin with, it is noted that

Osyzgkle

(7
since ki < 82 < kje,. The derivative of the Green’s function in a
transverse direction is expressed as

3G(yp) /9t =—v(At/o) Ki(vp) /27 (8a)

where = x or y, At denotes the difference x — x’ or y — y/,
correspondingly, and K, denotes the first-order modified Bessel
function of the second kind. It is noted that both functions K|,
and K, are positive and monotonically decreasing. In a practical
calculation, arguments in the associated Green’s function range
from zero to a quantity of order 1 or 10. When yp = 0, K, and
K, become singular as

Ko(ve) » —In(1.781yp/2) (8b)

and

Ki(y0) =1/vp (8¢)

and when yp —» o0, K, and K| are equal and become vanishing
as

Ko(v0), Ki(v0) = (m/2vp) " exp(—yp).  (8d)

For a small argument yp <1, the functional values of K, and K,
follow the relations, with the symbol — in (8b) and (8¢) being
replaced by the inequalities > and <, respectively. For a large
argument yp >1, one may use (8d) as asymptotic values of both
K, and K. It is essential to note that, except for the argument
being very small, the functional values of K, and K, are of the
same order of magnitude. Thus, the ratio between the magnitude
of Green’s function G and that of dG(yp)/3¢ is at least of order
1/vy. The functional values of both K, and K; with a large
argument are much less than those with a small one, and are
neglected in the following analysis (the results derived in (10) still
hold if this approximation is removed, by noting the factor y in
(8a)). Then, for an arbitrary positive (or nonnegative) function f,
we have

ffG(Yp)f(x yy') dx’ dy’ >ff
[ [——

=(f>0(¢&)

~In
(Yp)f(x,y)dx "dy’

(YP)

/d/

(9a)

and

%/fG(YP)f(x',y’) dx’ dy’
=af [£(x',.
<afff(;+py) dax’dy’
={f)0(af).

I(Yp) o dy’

(9b)
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Here £=17 when y/<1, or §=1/y when y/>1; / denotes the
linear dimension of the cross section; « denotes the resultant
effect of — Atz /p, which is a complicated function of the observa-
tion point (x, y) (in any event, the magnitude of « is less or
much less than unity, since —1<A#/p <1); O stands for the
order of magnitude; and (-} denotes the averaged magnitude of
the associated function over an area of linear dimension £
around the observation point (x, y).

Apparently, the relations in (9) hold for a piecewise-continuous
function. Thus, for a function f,(x, y) being positive over the
cross section and, possibly, containing discontinuities due to the
discontinuities in the profile P(x, y), we have

0(¢/a) (10a)

a4 /8t

where

A,(x,p) = [ [G(a0) (2", v') v’ dy.

Further, it is noted that, in general, (9) is still valid for a function
df, /dt being positive and, possibly, containing singularities due
to the discontinuities in P(x, y). Then,

=0(¢/a) (10b)

dB /at

where s = x or y, and

B.(x,7) = jfc() (’” ' dy.

Noting dG/dt=— 3G /It and using mtegration by parts, we
have

g A,=B
at t e
Relations similar to (9) can be given for those functions f(x, y)
which cannot be either positive or negative over the entire cross
section. One may divide the cross section into two subregions and
let f(x,y)=f (x,y)—f*(x,y), such that f* (f?) is positive
(zero) over one subregion, and is zero (positive) over the other
one. Treating the integrals involving f! and f? separately, it is
seen that (10) is still valid for general cases. The three relations
given in (10) play a central role in this investigation. As discussed
below, (10c), together with (10a) and (10b), implies that so long
as the difference A is kept small, the effect of the polarization
charge even in a rapidly varying profile is much weaker than that
of the transverse polarization current, the condition upon which
the scalar approximation is valid.

Consider the case where (E,) is much greater than or is
comparable to (E,). Assume for the moment that (E ) is
greater than (E,) by a factor k£ /a or larger. Then, using (10)
and (7) it is found that the ratio between the orders of magnitude
of the first integral on the right-hand side of (6a), the second of
(6a), the first of (6¢), and the second of (6¢) is

(10c¢)

O(ki£%): 0(e?): O(Aaky£) : O(ak£) (11)
which is consistent with the assumption just made (noticing the
ratio between the first and the last terms). Note that, as seen
from (6a), the quantity A(k,£)? should be of the order of unity.
Consequently, when the permittivity difference A vanishes, (6a)
becomes the scalar field integral equation

v(x ) =k [ [G(r)[e(x', ) —a]¥(x, y) dx'dy’ (12)
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where  denotes E,. Since the integral equation (12) is obtained
by discarding those terms smaller by a factor of order oA, it is
reasonable to expect that the relative errors in both the eigen-
value B and the eigenfunction ¢ are of the same order. (Based on
a perturbation theory, a proof of such relations has been given
for the standard eigenvalue problem in the matrix form [14].)

In the case where { E, ) is much greater than (E, ), such as in a
mode excited by an x-polarized wave, it is found from (6) that, in
general, the ratio between the magnitudes of the three Cartesian
components is

E,:E:E,~1:0(a/b):0(a™). (132)
From the relation v X E = — jop,H, one can find that
B
Hy=mEx{1+0[a2A]}. (13b)

Then, H, satisfies (12), under the same order of inaccuracy. The
arguments made above can be given for E, by simply interchang-
ing the subscripts x and y. In summary, (12) is valid for the
transverse Cartesian components, E,, E,, H, , and H,, whereas

»?
it does not hold for the axial components E. and H,. On
applying the operator (V2 — y2) to both sides of (12), we obtain
(3), the differential equation in the scalar form.

IV. CONCLUSIONS

From the electric field integral equation a quantitative analysis
of the effect of polarization charge has been given. It is found
that the error due to the scalar approximation (neglecting the
polarization charge) is proportional to the difference A, regard-
less of the functional behavior of the profile P. Physically, this
fact is accounted for by noting that, so long as the difference A is
kept small, a rapidly varying permittivity distribution leads to
closely clustered polarization charge (positive or negative); hence
the polarization effect is weakened due to self-cancellation. We
have conducted many calculations for a circular fiber (using the
method in [15]), and all the results support the conclusion.
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Saturation of the SIS Mixer by Out-of-Band Signals
LARRY R. D’ADDARIO

Abstract —The tendency of SIS mixers to saturate at low input signal
levels is shown to depend on the total signal voltage across the junction,
including frequency components outside the band of interest. If large
dynamic range is fo be achieved, mixers should be designed with embed-
ding networks that present low impedances to the junction at out-of-band
frequencies.

I. INTRODUCTION

SIS (superconductor—insulator—superconductor tunnel junc-
tion) mixers allow the construction of very sensitive receivers at
millimeter wavelengths, but the dynamic range of such receivers
may be limited because of mixer saturation at low input powers.
This has long been recognized as a significant problem [1]-[5],
and approximate formulas have been presented for the input
power at which departure from linear operation begins [1], [2].
Reports of experimental mixers often include measurements of
this saturation power (e.g. [4], [5]). However, nearly all of this
theoretical and experimental work has considered only a mono-
chromatic input signal. In practice, it is often necessary for the
receiver to accept a broad-band noise signal, such as thermal
noise at room temperature. For example, strong noise sources are
often used to calibrate the gain of the receiver and to determine
its noise temperature; unless it can be assured that the receiver
remains linear for these signals, the calibration will be in error.
We will show here that it is inaccurate to assume that the
saturation noise temperature T, for broad-band signals will be
such that P, = kT, B, where P, is the saturation power mea-
sured for monochromatic signals and B is the receiver’s band-
width. This is because the broad-barnd signal contains power well
outside this bandwidth, and, unless special precautions are taken,
an SIS mixer will begin saturating because of the out-of-band
signals well before the in-band power reaches P,

at
II. APPROXIMATE ARGUMENT

An argument explaining the saturation mechanism of SIS
mixers was first put forward by Smith and Richards [1], and later
developed into an explicit formula [2]. The idea is that the
small-signal gain of the mixer is a function of its dc bias, and
reaches local maxima at certain voltages (photon peaks) where
the mixer is normally operated. If the output frequency (IF) is
low, then the output signal voltage may be considered a perturba-
tion of the bias voltage, so that the instantaneous gain varies over
the IF cycle. As the signal voltage gets large, the average gain is
reduced from the peak. The embedding impedances required for
low-noise, high-gain operation of ar SIS mixer are such that the
largest signal voltage is likely to occur at the IF, in which case
this argument gives a fair description of the saturation mecha-
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